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Abstract

Symmetry is an important and unifying notion in many areas of
physics. In quantum mechanics, it is possible to eliminate degrees of
freedom from a system by leveraging symmetry to identify the possible
physical transitions. This allows us to simplify calculations and char-
acterize potentially complicated dynamics of the system with relative
ease. Previous works have focused on devising quantum algorithms to
ascertain symmetries by means of fidelity-based symmetry measures.
In our present work, we develop alternative symmetry testing quan-
tum algorithms that are efficiently implementable on quantum com-
puters. Our approach estimates asymmetry measures based on the
Hilbert–Schmidt distance, which is significantly easier, in a computa-
tional sense, than using fidelity as a metric. The method is derived
to measure symmetries of states, channels, Lindbladians, and mea-
surements. We apply this method to a number of scenarios involving
open quantum systems, including the amplitude damping channel and
a spin chain, and we test for symmetries within and outside the finite
symmetry group of the Hamiltonian and Lindblad operators.

We dedicate our paper to the memory of Göran Lindblad (July 9,
1940–November 30, 2022), whose profound contributions to quan-
tum information science, in the form of the Lindblad master
equation [47] and the data-processing inequality for quantum rel-
ative entropy [46], will never be forgotten.
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1 Introduction

Symmetry is a fundamental concept in physics, simplifying our understand-
ing of the physical world [22, 27]. In quantum mechanics especially, symme-
try is helpful for determining which physical transitions are allowed [74, 1, 3]
or in reducing the number of degrees of freedom needed to express a given
physical system, thus making it easier to solve equations or optimization
problems. In practical considerations, the interaction of the system with
the environment can lead to a loss of symmetry, or yet, enforce certain
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Figure 1: Interactions of systems with the environment can be symmetry preserv-
ing or symmetry breaking. The figure depicts an illustrative example of water waves
interacting with wind that blows along different directions, potentially preserving
or breaking the initial symmetry. In the first example (top), the wind preserves
the symmetric structure of the water waves, so that the wind acts as a covariant
channel, while in the second example (bottom), the wind is too chaotic, breaks the
symmetry, and thus does not act as a covariant channel.

symmetries (Figure 1). As such, the concept of symmetry has carried over
to quantum information processing [50], for understanding phenomena like
entanglement [73, 19, 16, 17, 18, 12], coherence [48, 53, 62], and reference
frames [3, 26]. The essential role of symmetry has elevated the concept itself
to the status of a quantum resource theory [51, 52], in which objects possess-
ing symmetry are considered freely available and those that break symme-
try have value. Most recently, symmetry is being used in quantum machine
learning to improve the trainability of learning algorithms [43, 54, 61].

Motivated by its fundamental role in physics and related fields, the au-
thors of [40, 42] (cf. [39]) developed several quantum algorithms for testing
symmetry of states, Hamiltonians, channels, and measurements on quantum
computers, and a sequel paper places the related problems in the context
of quantum computational complexity theory [41]. A number of these al-
gorithms are efficiently realizable on quantum computers, while others have
computational complexity provably beyond that of the standard BQP com-
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plexity class and thus are believed to be difficult even for quantum comput-
ers to solve (here, BQP stands for bounded error quantum polynomial time;
see [71, 69] for reviews on quantum computational complexity theory). An-
other contribution of [40] was to develop variational quantum algorithms for
these more difficult problems, by replacing the operations of an unbounded
“prover” with parameterized quantum circuits; this approach works well in
certain instances but does not lead to provable computational runtimes (see
[8, 4] for reviews of variational quantum algorithms).

One of the main contributions of the present paper is to develop alter-
native symmetry-testing algorithms that can be efficiently implemented on
quantum computers. In contrast to the prior approaches from [40, 42], we
modify the measure being estimated by a quantum computer. Whereas all
of the algorithms from [40] estimate symmetry measures based on fidelity
[68], here we develop algorithms that estimate asymmetry measures based
on the Hilbert–Schmidt distance. Since estimating fidelity is considered to
be a difficult problem for a quantum computer (more precisely, complete
for a complexity class called quantum statistical zero knowledge [70]), while
estimating the Hilbert–Schmidt distance is considered easy for a quantum
computer (more precisely, complete for BQP [59]), it is expected that sev-
eral of the symmetry testing algorithms from [40] are difficult for a quantum
computer while the symmetry testing algorithms developed here are easy for
a quantum computer to execute.

In our paper, we develop efficient symmetry testing algorithms for a
number of scenarios involving open quantum systems. Specifically, our con-
tributions consist of the following:

1. Given a state ρ and a unitary representation {U(g)}g∈G of a group G,
our first algorithm estimates the following asymmetry measure:

1

|G|
∑
g∈G

∥[U(g), ρ]∥22 , (1)

where

∥A∥2 :=
√
Tr[A†A] (2)

is the Hilbert–Schmidt norm of an operator A. This measure is a
faithful asymmetry measure, in the sense that it is equal to zero if and
only if [U(g), ρ] = 0 for all g ∈ G, the latter being the defining con-
dition for symmetry of the state ρ with respect to the representation
{U(g)}g∈G [3, 26, 50].
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2. Given a quantum channel N and a unitary channel representation
{U(g)}g∈G of a group G, where U(g)(·) := U(g)(·)U(g)†, our next
algorithm estimates the following asymmetry measure:

1

|G|
∑
g∈G

∥∥∥(id⊗ [U(g),N ]) (Φd)
∥∥∥2
2
, (3)

where id denotes the identity superoperator, [U(g),N ] represents the
superoperator commutator (see, e.g., [3, Section II-C]), defined for
superoperators A and B as

[A,B] := A ◦ B − B ◦ A, (4)

and

Φd :=
1

d

∑
i,j

|i⟩⟨j| ⊗ |i⟩⟨j| (5)

is the standard maximally entangled state of Schmidt rank d. Thus,

(id⊗ [U(g),N ]) (Φd) =

(id⊗ (U(g) ◦ N )) (Φd)− (id⊗ (N ◦ U(g))) (Φd). (6)

As we show later on, the measure in (3) is a faithful asymmetry mea-
sure, in the sense that it is equal to zero if and only if

[U(g),N ] = 0 ∀g ∈ G, (7)

or, equivalently, if and only if

U(g) ◦ N = N ◦ U(g) ∀g ∈ G. (8)

The latter is the defining condition for covariance symmetry of the
channelN with respect to the unitary channel representation {U(g)}g∈G
[33, 50]. In words, the equality above means that the channel N
commutes with every unitary channel representation U(g) of a group
element g ∈ G. Our algorithm for this task builds on an efficient sub-
routine for estimating the Hilbert–Schmidt distance of the Choi states
of two quantum channels, which may be of independent interest for
other purposes in quantum computing.

3. As a special case of the above, we consider testing covariance sym-
metry of measurements channels, which have the form ρ → M(ρ) :=
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∑
xTr[Mxρ]|x⟩⟨x|, where {Mx}x is a positive operator-valued measure

and {|x⟩}x is an orthonormal basis that encodes the measurement
outcome. Specifically, we provide an algorithm that estimates the fol-
lowing asymmetry measure:

1

|G|
∑
g∈G

∥∥∥ΦM◦U(g) − ΦW(g)◦M
∥∥∥2
2
, (9)

where {U(g)}g∈G and {W(g)}g∈G are unitary channel representations
of a group G, with the latter realizing a shift of the measurement
outcome as

W(g)(|x⟩⟨x|) = |πg(x)⟩⟨πg(x)|, (10)

for πg a permutation. As discussed later on, this asymmetry measure
is equal to zero if and only if the measurement is covariant [14, 34], i.e.,
such that U(g)(Mx) is an element of the POVM for all g ∈ G. Here
again our algorithm builds on an efficient subroutine for estimating the
Hilbert–Schmidt distance between two measurement channels, which
we show is easier to perform than the aforementioned subroutine for
general channels with quantum inputs and quantum outputs. We also
believe that this subroutine should be of independent interest for other
purposes in quantum computing.

As a particular application of our algorithm for estimating (3), we in-
vestigate the symmetry of Lindbladian evolutions, i.e., evolutions that cor-
respond to the solution of the well known Lindblad master equation [47]:

∂ρ

∂t
= L(ρ) := −i [H, ρ] +

∑
k

LkρL
†
k −

1

2
{L†

kLk, ρ}, (11)

where H is a Hamiltonian, {Lk}k is a set of Lindblad operators, and L is a
superoperator known as the Lindbladian. It is well known that the solution
of (11) is the following quantum channel:

eLt(ρ) =
∞∑
n=0

Ln(ρ)tn

n!
, (12)

where Ln denotes n repeated applications of the superoperator L. We ac-
complish symmetry testing of a Lindbladian L by employing our algorithm
for estimating (3) with the substitution N = eLt, and later on, we remark on
how symmetry testing of the channel eLt is equivalent to symmetry testing
of the Lindbladian L.
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Similar to how understanding symmetries of Hamiltonians can be helpful
for deducing which physical transitions are allowed and which are not, the
same can be said for understanding symmetries of the more general Lind-
bladian evolutions. As a particular example of this phenomenon, consider a
Lindbladian in which the Hamiltonian is the photon number operator [25]
and there is one Lindblad operator, which is also the photon number opera-
tor. Then the only states that are invariant under the resulting channel eLt

are the photon number states and mixtures thereof, because every other
state becomes dephased by this evolution. Thus, under these dynamics and
for long times, it is not possible to transition from a probabilistic mixture
of photon number states to a coherent superposition of them, the latter of
which is resourceful for estimation tasks in quantum metrology [67]. More
generally, our algorithm is helpful for understanding symmetries of Lind-
bladian evolutions that are efficiently realizable on quantum computers, by
means of any of the several quantum algorithms that have been proposed for
simulating open systems dynamics [9, 13, 36, 60, 65] (see [55] for a review).

Before proceeding with the content of our paper, we note here that the
symmetry testing quantum algorithms proposed here, like those from [40,
42], are most useful in the regime in which the states, channels, Lindbladians,
or measurements being tested, as well as the group representation unitaries
being considered, involve a large number of qubits and are non-trivial. In
this regime, it is likely not possible to simulate these tests efficiently by
means of a classical computer, as shown in [42, 41], based on the conjecture
that the complexity class BQP strictly contains the complexity class BPP
(the latter being the class of problems that are efficiently implementable on
a classical probabilistic computer). The previous statement, less formally,
is equivalent to the widespread belief that quantum computers, in principle,
are generally more powerful than classical computers. Furthermore, it is
certainly of interest to employ quantum computers for the task of learning
symmetries (see, e.g., [49]), and we consider the ability to test symmetries to
be an important component of the learning process (either while the learning
is occurring or after learning has completed, as a way of testing whether the
learned symmetry is indeed correct).

In the rest of our paper, we provide details of our algorithms and evaluate
their performance for some exemplary physical systems of interest. In par-
ticular, Section 2 reviews some basic notation and concepts used throughout
the rest of our paper. Section 3 develops the theory behind our quantum al-
gorithms for testing symmetry of states (Section 3.1), channels (Section 3.3),
and Lindbladians (Section 3.4). As part of our algorithm for testing sym-
metries of channels, we develop an efficient subroutine for estimating the
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Hilbert–Schmidt distance of the Choi states of two quantum channels (Sec-
tion 3.2), which may be of independent interest for other purposes in quan-
tum computing. Specifically, this algorithm significantly reduces the num-
ber of qubits needed for the estimation, when compared to a naive approach
to this problem. In Section 4, we test out our algorithms for estimating
symmetries of Lindbladians for two example scenarios, using Qiskit’s noise-
less and noisy simulators [66]. Section 5 particularizes the development for
quantum channels to the case of quantum measurement channels, proposing
both a procedure for estimating the Hilbert–Schmidt distance of the Choi
states of two such channels, as well as for estimating an asymmetry measure
for a given measurement channel. Finally, in Section 6, we conclude with
a summary of our contributions, along with a discussion of prospects for
implementing the developed algorithms on near-term quantum hardware.

2 Notation and background

This section provides some notation and background used throughout the
rest of our paper. See [28, 75, 72, 35, 37] for further background on quantum
information. A quantum state (density operator) is described by a positive
semi-definite operator with unit trace. A quantum channel is a completely
positive, trace-preserving superoperator. The Choi state ΦN of a channel N
is given by sending one share of a maximally entangled state Φd, defined
in (5), through the channel:

ΦN := (id⊗N )(Φd), (13)

where we have assumed that the input space of N is d-dimensional.

2.1 Hilbert–Schmidt distance

The Hilbert–Schmidt distance between two states ρ and σ, induced by the
norm in (2), is given by ∥ρ− σ∥2. It is faithful, in the sense that ∥ρ− σ∥2 = 0
if and only if ρ = σ. It obeys the data-processing inequality for unital chan-
nels [58], but it does not obey it in general [57]; that is, the following in-
equality holds whenever N is a unital channel (satisfying N (I) = I, where I
is the identity operator):

∥ρ− σ∥2 ≥ ∥N (ρ)−N (σ)∥2 . (14)

When ρ and σ are multi-qubit states and one can prepare many copies
of them on a quantum computer, it is easy to estimate the square of their
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Hilbert–Schmidt distance by means of the destructive SWAP test (reviewed
in Section 2.2 below). This follows by considering the expansion

∥ρ− σ∥22 = Tr[ρ2] + Tr[σ2]− 2Tr[ρσ], (15)

and the algorithm reviewed in the next section. In fact, it is known that esti-
mating the Hilbert–Schmidt distance of quantum states ρ and σ prepared by
circuits is a BQP-complete problem [59, Theorem 14], so that this problem
captures and is equivalent to the full power of quantum computation.

2.2 Review of destructive SWAP test

Let us define the unitary swap operator as

SWAP :=
∑
i,j

|i⟩⟨j| ⊗ |j⟩⟨i|, (16)

and note the following identity:

Tr[CD] = Tr[SWAP(C ⊗D)], (17)

which holds for arbitrary linear operators C and D and plays a key role in
our algorithms that follow. Recall that, if the SWAP operator acts on qubit
systems, then

SWAP =
∑

i,j∈{0,1}

(−1)ij Φij , (18)

where
Φ00 = Φ+, Φ01 = Φ−, Φ10 = Ψ+, Φ11 = Ψ−. (19)

In the above, Φ+ ≡ |Φ+⟩⟨Φ+|, Φ− ≡ |Φ−⟩⟨Φ−|, Ψ+ ≡ |Ψ+⟩⟨Ψ+|, and Ψ− ≡
|Ψ−⟩⟨Ψ−| are the standard Bell states, defined through

|Φ±⟩ := 1√
2
(|00⟩ ± |11⟩) , |Ψ±⟩ := 1√

2
(|01⟩ ± |10⟩) . (20)

This means that the SWAP observable for qubits can be measured by means
of a Bell measurement and classical post-processing, a fact that is used in
the destructive SWAP test method for measuring the SWAP observable [24]
(see also [6, 64] and Eqs. (26)–(37) of [59] for a review of this method).

For convenience, we briefly review the destructive SWAP test [24] for
estimating the overlap term Tr[ρσ], where ρ and σ are n-qubit states, with ρ
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a state of qubits 1, . . . , n and σ a state of qubits n + 1, . . . , 2n. The idea
behind it is a consequence of the following observation:

Tr[ρσ] = Tr[SWAP(n)(ρ⊗ σ)] (21)

=
∑

k⃗,ℓ⃗∈{0,1}n
(−1)k⃗·ℓ⃗Tr[Φk⃗ℓ⃗ (ρ⊗ σ)], (22)

where

k⃗ ≡ (k1, k2, . . . , kn), ℓ⃗ ≡ (ℓ1, ℓ2, . . . , ℓn), (23)

Φk⃗ℓ⃗ ≡ Φk1ℓ1
1,n+1 ⊗ Φk2ℓ2

2,n+2 ⊗ · · · ⊗ Φknℓn
n,2n , (24)

and we used the identity in (18), as well as the fact that

SWAP(n) = SWAP⊗n (25)

=

∑
k1,ℓ1

(−1)k1ℓ1 Φk1ℓ1
1,n+1

⊗ · · · ⊗

∑
kn,ℓn

(−1)knℓn Φknℓn
n,2n

 (26)

=
∑

k⃗,ℓ⃗∈{0,1}n
(−1)k⃗·ℓ⃗Φk⃗ℓ⃗. (27)

By setting Z ≡ (K⃗, L⃗) to be a multi-indexed random variable taking the

value (−1)k⃗·ℓ⃗ with probability

p(k⃗, ℓ⃗) := Tr[Φk⃗ℓ⃗ (ρ⊗ σ)], (28)

we find from (21)–(22) that its expectation is given by

E[Z] =
∑

k⃗,ℓ⃗∈{0,1}n
(−1)k⃗·ℓ⃗Tr[Φk⃗ℓ⃗ (ρ⊗ σ)] = Tr[ρσ]. (29)

This observation then leads to the following quantum algorithm (destructive
SWAP test) for estimating Tr[ρσ], within additive error ε and with success
probability at least 1− δ, where ε > 0 and δ ∈ (0, 1).

Algorithm 1 Given are quantum circuits to prepare the n-qubit states ρ
and σ.

1. Fix ε > 0 and δ ∈ (0, 1). Set T ≥ 2
ε2

ln
(
2
δ

)
and set t = 1.
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ρ

• H k1

• H k2

• H k3

σ

ℓ1

ℓ2

ℓ3

Figure 2: Depiction of the core quantum subroutine given in Steps 2.-3. of Al-
gorithm 1, for the three-qubit states ρ and σ. This algorithm estimates the over-
lap Tr[ρσ].

2. Prepare the states ρ and σ on 2n qubits (using the ordering specified
in (24)).

3. Perform the Bell measurement {Φk⃗ℓ⃗}
k⃗ℓ⃗

on the 2n qubits, which leads

to the measurement outcomes k⃗ and ℓ⃗.

4. Set Zt = (−1)k⃗·ℓ⃗.

5. Increment t.

6. Repeat Steps 2.-5. until t > T and then output Z := 1
T

∑T
t=1 Zt as an

estimate of Tr[ρσ].

Figure 2 depicts the core quantum subroutine of Algorithm 1. By the
Hoeffding inequality (recalled as Theorem 1 below), we are guaranteed that
the output of Algorithm 1 satisfies

Pr
[∣∣Z − Tr[ρσ]

∣∣ ≤ ε
]
≥ 1− δ, (30)

due to the choice T ≥ 2
ε2

ln
(
2
δ

)
.

Clearly, by the expansion in (15) and repeating Algorithm 1 three times,
one can use O

(
1
ε2

ln
(
1
δ

))
samples of ρ and σ in order to obtain an estimate

of (15) within additive error ε > 0 and with success probability not smaller
than 1− δ, where δ ∈ (0, 1).

Theorem 1 (Hoeffding Inequality [29]) Suppose that we are given T in-
dependent samples Y1, . . . , YT of a bounded random variable Y taking values
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in the interval [a, b] and having mean µ. Set YT := 1
T (Y1 + · · · + YT ) to be

the sample mean. Let ε > 0 be the desired accuracy, and let 1 − δ be the
desired success probability, where δ ∈ (0, 1). Then

Pr[|YT − µ| ≤ ε] ≥ 1− δ, (31)

as long as T ≥ M2

2ε2
ln
(
2
δ

)
, where M := b− a.

3 Quantum algorithms for testing symmetries

3.1 Testing symmetries of states

Let us now introduce a simple quantum algorithm for testing symmetry
of the state ρ with respect to the unitary representation {U(g)}g∈G of a
group G. Specifically, the goal is to estimate the normalized commutator
norm in (1). As discussed around (1), this asymmetry measure is equal to
zero if and only if [U(g), ρ] = 0 for all g ∈ G. To start off, we establish
the following lemma, which provides a direct link between the asymmetry
measure in (1), and an approach we can use for estimating it on a quantum
computer.

Lemma 1 Given a state ρ and a unitary representation {U(g)}g∈G of a
group G, the following equality holds:

1

|G|
∑
g∈G

∥[U(g), ρ]∥22 = 2
(
Tr[ρ2]− Tr[ρTG(ρ)]

)
, (32)

where TG is the twirl channel given by

TG(·) :=
1

|G|
∑
g∈G

U(g)(·)U(g)†. (33)

Proof. Consider the following equalities:

∥[U(g), ρ]∥22 = ∥ρU(g)− U(g)ρ∥22 (34)

=
∥∥∥ρ− U(g)ρU(g)†

∥∥∥2
2

(35)

= Tr[ρ2] + Tr[(U(g)ρU(g)†)2]− 2Tr[ρU(g)ρU(g)†] (36)

= 2
(
Tr[ρ2]− Tr[ρU(g)ρU(g)†]

)
, (37)
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where the second equality is due to the unitary invariance of the Hilbert–
Schmidt norm, the third from the expansion in (15), and the final one from
cyclicity of trace. Thus, we see that

1

|G|
∑
g∈G

∥[U(g), ρ]∥22 =
1

|G|
∑
g∈G

2
(
Tr[ρ2]− Tr[ρU(g)ρU(g)†]

)
(38)

= 2
(
Tr[ρ2]− Tr[ρTG(ρ)]

)
, (39)

concluding the proof.

Now suppose that the state ρ is an n-qubit state and efficiently prepara-
ble on a quantum computer, either by a quantum circuit or other means,
and that, for all g ∈ G, there exists a circuit that efficiently realizes the
n-qubit unitary U(g). Then the idea for estimating the asymmetry mea-
sure in (1) is simple: Perform the destructive SWAP test (Algorithm 1) to
estimate Tr[ρ2] and perform the same test, using instead ρ and its twirled
version TG(ρ), to estimate Tr[ρTG(ρ)]. When estimating the latter term, we
modify Algorithm 1 to be as follows:

Algorithm 2 Given is a quantum circuit to prepare the n-qubit state ρ and
circuits to generate the unitaries in the representation {U(g)}g∈G.

1. Fix ε > 0 and δ ∈ (0, 1). Set T ≥ 2
ε2

ln
(
2
δ

)
and set t = 1.

2. Pick g ∈ G uniformly at random. Prepare the states ρ and U(g)ρU(g)†

on 2n qubits (using the ordering specified in (24)).

3. Perform the Bell measurement {Φk⃗ℓ⃗}
k⃗ℓ⃗

on the 2n qubits, which leads

to the measurement outcomes k⃗ and ℓ⃗.

4. Set Zt = (−1)k⃗·ℓ⃗.

5. Increment t.

6. Repeat Steps 2.-5. until t > T and then output Z := 1
T

∑T
t=1 Zt as an

estimate of Tr[ρTG(ρ)].

Thus, by combining the estimates of Tr[ρ2] and Tr[ρTG(ρ)] according
to (32), it follows that this approach uses O

(
1
ε2

ln
(
1
δ

))
samples of ρ in order

to obtain an estimate of the asymmetry measure in (1) within additive error
ε > 0 and with success probability not smaller than 1− δ, where δ ∈ (0, 1).
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3.2 Estimating the Hilbert–Schmidt distance of the Choi
states of channels

Let us now introduce a method for estimating the Hilbert–Schmidt distance
between the Choi states of two quantum channels, as a generalization of the
destructive SWAP test used for estimating the Hilbert–Schmidt distance
between two states. This algorithm has applications beyond symmetry test-
ing, for example, in quantum channel compilation as a generalization of
compiling states (see [21] for the latter).

To begin with, recall that two channels N and M are equal if and only
if their Choi states are equal [75, Section 4.4.2]; i.e.,

N = M ⇔ ΦN = ΦM, (40)

where the Choi states ΦN and ΦM are defined in (13). One way to determine
whether the equality above holds approximately is to employ the Hilbert–
Schmidt distance of the Choi states:∥∥ΦN − ΦM∥∥

2
, (41)

where the Hilbert–Schmidt norm is defined in (2). This is due to the positive
definiteness or faithfulness of the norm, i.e.,∥∥ΦN − ΦM∥∥

2
= 0 ⇔ ΦN = ΦM. (42)

Using the expansion in (15), consider that∥∥ΦN − ΦM∥∥2
2
= Tr[(ΦN )2] + Tr[(ΦM)2]− 2Tr[ΦNΦM]. (43)

The following lemma gives a way of rewriting the overlap Tr[ΦNΦM] in
terms of the SWAP observable, and it is critical to our simplified approach
for estimating the Hilbert–Schmidt distance between the Choi states of two
channels.

Lemma 2 Let N and M be channels with Choi states ΦN and ΦM, respec-
tively, and d-dimensional inputs. Then

Tr[ΦNΦM] =
1

d2
Tr[SWAP(N ⊗M)(SWAP)]. (44)

Proof. Consider that

Tr[ΦNΦM] = Tr[(id⊗N )(Φd)(id⊗M)(Φd)] (45)
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=
1

d2

∑
i,j,k,ℓ

Tr[(|i⟩⟨j| ⊗ N (|i⟩⟨j|)) (|k⟩⟨ℓ| ⊗M(|k⟩⟨ℓ|))] (46)

=
1

d2

∑
i,j,k,ℓ

⟨ℓ|i⟩⟨j|k⟩ ⊗ Tr[N (|i⟩⟨j|)M(|k⟩⟨ℓ|)] (47)

=
1

d2

∑
i,j

Tr[N (|i⟩⟨j|)M(|j⟩⟨i|)] (48)

=
1

d2

∑
i,j

Tr[SWAP (N ⊗M) (|i⟩⟨j| ⊗ |j⟩⟨i|)] (49)

=
1

d2
Tr[SWAP (N ⊗M) (SWAP)]. (50)

The penultimate equality follows from (17).

Now suppose that the channels N and M each accept n qubits as input
and output m qubits. Then each of the terms in (43) can be efficiently
measured on a quantum computer. For example, to measure the last term
Tr[ΦNΦM], one could prepare the tensor-product state ΦN ⊗ΦM and then
perform a destructive SWAP test, as recalled in Algorithm 1. This ap-
proach, which we consider to be a naive approach in light of Algorithm 3
below, requires 2(n + m) qubits in total, for a circuit width of 2(n + m)
qubits. However, what follows as a consequence of Lemma 2 is that there
is a simpler procedure for estimating Tr[ΦNΦM], which requires preparing
only 2n qubits at the input and acting on 2m qubits at the output, and thus
for a circuit width of max{2n, 2m} qubits.

Indeed, Lemma 2 establishes that

Tr[ΦNΦM] =
1

22n
Tr[SWAP(m) (N ⊗M) (SWAP(n))], (51)

where the superscript notation explicitly indicates the number of qubits on
which the swap operator acts. Next recall (25)–(27), which implies that

1

22n
Tr[SWAP(m) (N ⊗M) (SWAP(n))]

=
1

22n

∑
i⃗,⃗j∈{0,1}m

∑
k⃗,ℓ⃗∈{0,1}n

(−1)i⃗·⃗j+k⃗·ℓ⃗Tr[Φi⃗⃗j (N ⊗M) (Φk⃗ℓ⃗)], (52)

where

i⃗ ≡ (i1, i2, . . . , im), j⃗ ≡ (j1, j2, . . . , jm), (53)
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k⃗ ≡ (k1, k2, . . . , kn), ℓ⃗ ≡ (ℓ1, ℓ2, . . . , ℓn), (54)

Φi⃗⃗j ≡ Φi1j1
1,m+1 ⊗ Φi2j2

2,m+2 ⊗ · · · ⊗ Φimjm
m,2m, (55)

Φk⃗ℓ⃗ ≡ Φk1ℓ1
1,n+1 ⊗ Φk2ℓ2

2,n+2 ⊗ · · · ⊗ Φknℓn
n,2n . (56)

Eq. (52) and Lemma 2 are the key insights that lead to a simplified
quantum algorithm for estimating the term Tr[ΦNΦM], which requires only
2n qubits at the input and 2m qubits at the output. In the above, we
have implicitly used the following ordering: the channel N acts on input
qubits 1, . . . , n and produces output qubits 1, . . . ,m, the channel M acts
on input qubits n + 1, . . . , 2n and produces output qubits m + 1, . . . , 2m,
and the qubits for the Bell states are labeled as subscripts above. By set-
ting Y ≡ (I⃗ , J⃗ , K⃗, L⃗) to be a multi-indexed random variable taking the

value (−1)i⃗·⃗j+k⃗·ℓ⃗ with probability

p(k⃗, ℓ⃗, i⃗, j⃗) = p(⃗i, j⃗ |⃗k, ℓ⃗) p(k⃗, ℓ⃗), (57)

where

p(k⃗, ℓ⃗) :=
1

22n
, (58)

p(⃗i, j⃗ |⃗k, ℓ⃗) := Tr[Φi⃗⃗j (N ⊗M) (Φk⃗ℓ⃗)], (59)

we find from (51)–(52) that its expectation is given by

E[Y ] =
1

22n
Tr[SWAP(m) (N ⊗M) (SWAP(n))] = Tr[ΦNΦM]. (60)

The observation in (60) then leads to the following quantum algorithm
for estimating Tr[ΦNΦM], within additive error ε and with success proba-
bility not smaller than 1− δ, where ε > 0 and δ ∈ (0, 1).

Algorithm 3 Given are quantum circuits to implement the channels N
and M.

1. Fix ε > 0 and δ ∈ (0, 1). Set T ≥ 2
ε2

ln
(
2
δ

)
and set t = 1.

2. Generate the bit vectors k⃗ and ℓ⃗ uniformly at random.

3. Prepare the Bell state Φk⃗ℓ⃗ on 2n qubits (using the ordering specified
in (56)).

4. Apply the tensor-product channel N ⊗M (using the ordering specified
after (56)).
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|k1⟩ H •

N

• H i1

|k2⟩ H • • H i2

|k3⟩ H • • H i3

|ℓ1⟩

M

j1

|ℓ2⟩ j2

|ℓ3⟩ j3

Figure 3: Depiction of the core quantum subroutine given in Steps 2.-5. of Algo-
rithm 3, such that the quantum channels N and M have three-qubit inputs and
outputs. This algorithm estimates the overlap Tr[ΦNΦM] of the Choi states of the
channels. In this example, the algorithm begins by preparing the classical state
|k1, k2, k3, ℓ1, ℓ2, ℓ3⟩, where the values k1, k2, k3, ℓ1, ℓ2, ℓ3 are chosen uniformly at
random, followed by a sequence of controlled NOTs and Hadamards. Before the

channels are applied, the state is thus |Φk⃗ℓ⃗⟩, as described in Algorithm 3. After the
channels are applied, Bell measurements are performed, which lead to the classical
bit string i1i2i3j1j2j3. In the diagram, we depict the realization of the channels
N and M as black boxes, but in a simulation of them, one might make use of
additional environment qubits that are prepared and then discarded.

5. Perform the Bell measurement {Φi⃗⃗j }⃗i,⃗j on the 2m output qubits, which

leads to the measurement outcomes i⃗ and j⃗.

6. Set Yt = (−1)i⃗·⃗j+k⃗·ℓ⃗.

7. Increment t.

8. Repeat Steps 2.-7. until t > T and then output Y := 1
T

∑T
t=1 Yt as an

estimate of Tr[ΦNΦM].

Figure 3 depicts the core quantum subroutine of Algorithm 3. By the
Hoeffding inequality (recalled as Theorem 1), we are guaranteed that the
output of Algorithm 3 satisfies

Pr
[∣∣Y − Tr[ΦNΦM]

∣∣ ≤ ε
]
≥ 1− δ, (61)

due to the choice T ≥ 2
ε2

ln
(
2
δ

)
.

By employing Algorithm 3 three times, we can thus estimate (43) within
additive error ε and with success probability not smaller than 1−δ, by using
O
(

1
ε2

ln
(
1
δ

))
samples of the channels N and M.
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3.3 Testing symmetries of channels

In this section, we leverage the methods for estimating the Hilbert–Schmidt
asymmetry measure for states (Section 3.1), as well as the method for es-
timating the Hilbert–Schmidt distance between the Choi states of channels
(Section 3.2), in order to develop an approach for estimating the covari-
ance symmetry of a quantum channel N with respect to a unitary channel
representation {U(g)}g∈G.

Recalling the superoperator commutator notation defined in (4), we are
interested in estimating the following asymmetry measure:

1

|G|
∑
g∈G

∥∥∥(id⊗ [U(g),N ]) (Φd)
∥∥∥2
2
. (62)

As discussed around (3), this asymmetry measure is equal to zero if and
only if N ◦ U(g) = U(g) ◦ N holds for every g ∈ G.

We begin with the following lemma:

Lemma 3 Given a quantum channel N and a unitary channel representa-
tion {U(g)}g∈G, the following equality holds:

1

|G|
∑
g∈G

∥∥∥(id⊗ [U(g),N ]) (Φd)
∥∥∥2
2
=

2

d2
Tr[SWAP(N⊗N )(SWAP)]

− 2

d2
Tr

SWAP

 1

|G|
∑
g∈G

(U(g) ◦ N )⊗ (N ◦ U(g))

 (SWAP)

 . (63)

Proof. Consider that, for all g ∈ G,∥∥∥(id⊗ [U(g),N ]) (Φd)
∥∥∥2
2

=
∥∥∥ΦU(g)◦N − ΦN◦U(g)

∥∥∥2
2

(64)

= Tr[(ΦU(g)◦N )2] + Tr[(ΦN◦U(g))2]− 2Tr[ΦU(g)◦NΦN◦U(g)] (65)

= 2
(
Tr[(ΦN )2]− Tr[ΦU(g)◦NΦN◦U(g)]

)
, (66)

where we made use of the expansion in (15), as well as the equalities

Tr[(ΦU(g)◦N )2] = Tr[(ΦN )2], Tr[(ΦN◦U(g))2] = Tr[(ΦN )2]. (67)

The equalities in (67) follow because

Tr[(ΦU(g)◦N )2] = Tr[{(id⊗(U(g) ◦ N ))(Φd)}2] (68)
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= Tr[{(id⊗N )(Φd)}2] (69)

= Tr[(ΦN )2], (70)

Tr[(ΦN◦U(g))2] = Tr[{(id⊗(N ◦ U(g)))(Φd)}2] (71)

= Tr[{(UT (g)⊗N )(Φd)}2] (72)

= Tr[{(id⊗N )(Φd)}2] (73)

= Tr[(ΦN )2]. (74)

The equalities in (69) and (73) in turn follow because the function Tr[σ2]
depends only on the eigenvalues of σ, and its eigenvalues are invariant under
the action of a unitary channel. The equality in (72) follows from the trans-
pose trick [75, Exercise 3.7.12]; i.e., the identity (id⊗U)(Φd) = (UT⊗id)(Φd)
holds for every unitary channel U , where the transpose channel is defined as
UT (·) = UT (·)U , with U the matrix realized from U by entrywise complex
conjugation. Now employing Lemma 2, we can write

Tr[(ΦN )2] =
1

d2
Tr[SWAP(N⊗N )(SWAP)], (75)

Tr[ΦU(g)◦NΦN◦U(g)] =
1

d2
Tr[SWAP((U(g) ◦ N )⊗ (N ◦ U(g)))(SWAP)],

(76)

which finally implies the claim in (63).

In order to estimate the channel asymmetry measure in (62), it follows
from Lemma 3 that we can make use of Algorithm 3 to estimate the following
two quantities:

1

d2
Tr[SWAP(N⊗N )(SWAP)], (77)

1

d2
Tr

SWAP

 1

|G|
∑
g∈G

(U(g) ◦ N )⊗ (N ◦ U(g))

 (SWAP)

 , (78)

subtract the estimates, and multiply by two. For estimating the quantity
in (78), similar to how we did in Algorithm 2, we can slightly revise Algo-
rithm 3 such that g ∈ G is chosen uniformly at random in each step.

Remark 1 More generally, a quantum channel N can possess a covariance
symmetry of the following form:

N ◦ U(g) = V(g) ◦ N ∀g ∈ G, (79)
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where {U(g)}g∈G and {V(g)}g∈G are unitary channel representations of a
group G. This more general symmetry occurs especially in the case in which
the dimensions of the channel input and output differ (as is the case, e.g.,
for the quantum erasure channel [75]).

We note here that all of the observations from this section apply to this
more general case. Namely, the asymmetry measure from (62) generalizes
to

1

|G|
∑
g∈G

∥∥∥ΦN◦U(g) − ΦV(g)◦N
∥∥∥2
2
=

2

d2
Tr[SWAP(N⊗N )(SWAP)]

− 2

d2
Tr

SWAP

 1

|G|
∑
g∈G

(V(g) ◦ N )⊗ (N ◦ U(g))

 (SWAP)

 , (80)

where the equality follows from essentially the same proof given for Lemma 3.
Then we can again make use of Algorithm 3, in a similar fashion as discussed
around (78), in order to estimate the asymmetry measure above.

3.4 Testing symmetries of Lindbladians

In this section, we apply the symmetry testing algorithm from Section 3.3 to
the task of measuring the symmetry of a Lindbladian L, as defined in (11).
Given that the channel realized by the master equation in (11) is eLt, our
basic idea is to test for symmetry of this channel by means of the algorithm
from Section 3.3. As discussed previously, this amounts to estimating the
two terms in (77) and (78) using Algorithm 3, but with the replacement
N → eLt, and combining the estimates according to (63). The result is to
form an estimate of the following asymmetry measure:

a(L, t, {U(g)}g∈G) :=
1

|G|
∑
g∈G

∥∥∥(id⊗ [U(g), eLt]) (Φd)
∥∥∥2
2
, (81)

In order to do so, we require a means by which the channel eLt can be realized
or simulated. We can accomplish the latter by employing one of several
quantum algorithms for simulating Lindbladian evolutions [9, 13, 36, 60, 65]
(see [55] for a review).

The basic condition for symmetry of a Lindbladian L with respect to a
unitary channel representation is as follows [30, 32, 31]:

L ◦ U(g) = U(g) ◦ L ∀g ∈ G. (82)
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An alternative definition for symmetry of a Lindbladian L with respect to
a unitary channel representation {U(g)}g∈G is similar to what we defined in
(7)–(8), for channel symmetry [30, 32, 31]:

eLt ◦ U(g) = U(g) ◦ eLt ∀t ∈ R, g ∈ G. (83)

In the following proposition, we recall the well known fact that these two
definitions are actually equivalent:

Proposition 1 The symmetry condition in (83) holds if and only if it holds
for the Lindbladian L, so that

Proof. Suppose that (83) holds. We then find that

∂

∂t

(
eLt ◦ U(g)

)∣∣∣∣
t=0

=
∂

∂t

(
U(g) ◦ eLt

)∣∣∣∣
t=0

. (84)

The left-hand side then evaluates to L ◦ U(g) and the right-hand side to
U(g) ◦ L, concluding the proof of the if-part of the proposition. To see the
other implication (the only-if part), suppose that (82) holds. Then

eLt ◦ U(g) =
∞∑
ℓ=0

(
Lℓ ◦ U(g)

)
tℓ

ℓ!
=

∞∑
ℓ=0

(
U(g) ◦ Lℓ

)
tℓ

ℓ!
= U(g) ◦ eLt, (85)

where the second equality follows from repeated application of (82).

In fact, the main finding of [30] establishes a much stronger result: the
symmetry condition in (82) is equivalent to the existence of a represen-
tation of L of the form in (11), such that the completely positive map

(·) →
∑

k Lk(·)L†
k is covariant with respect to {U(g)}g∈G and [U(g), H] = 0

for all g ∈ G.
For small t, we perform a Taylor expansion of the Lindbladian term

contained in the asymmetry measure as defined in (81), in order to eluci-
date a relation between approximate symmetry of the channel eLt and the
Lindbladian L:

1

|G|
∑
g∈G

∥∥∥(id⊗ [U(g), eLt]) (Φd)
∥∥∥2
2

(86)

=
1

|G|
∑
g∈G

∥∥∥(id⊗[U(g), id+Lt+O(t3)]
)
(Φd)

∥∥∥2
2

(87)

=
1

|G|
∑
g∈G

∥∥∥(id⊗ ([U(g), id] + [U(g),Lt] + [U(g), O(t2)]
))

(Φd)
∥∥∥2
2

(88)
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=
1

|G|
∑
g∈G

∥∥∥(id⊗ ([U(g),L]t+ [U(g), O(t2)]
))

(Φd)
∥∥∥2
2

(89)

=
t2

|G|
∑
g∈G

∥∥∥(id⊗[U(g),L]) (Φd)
∥∥∥2
2
+O(t3). (90)

4 Simulations

In this section, we first describe two examples of open quantum systems,
namely, the amplitude damping channel and a two-qubit spin chain. We
subsequently present simulation results obtained from Qiskit implementa-
tions of the aforementioned systems, wherein we test them for symmetry
with respect to the finite discrete group Z2.

1

In the case of the amplitude damping channel, we use the algorithm
discussed around (77)–(78) to estimate the asymmetry measure in (63) and
then plot the same as a function of Γt, where Γ represents the rate of decay
per unit time and t denotes time. We find that, for all values of Γt, when
testing for Z symmetry (i.e., when our chosen unitary group representation
for Z2 is {U(g)}g∈Z2 = {I, Z}), the asymmetry measure is approximately
equal to zero with accuracy ϵ = 0.01. On the other hand, we find that the X
asymmetry measure diverges from zero with increasing values of Γt, which
is consistent with the well known fact that the amplitude damping channel
is not symmetric with respect to the representation {I,X}. Later in this

section, we show that it varies with Γt as 1
2

(
1− e−Γt

)2
, which is consistent

with our simulation results.
Similarly, we test a two-qubit spin-chain system for SWAP, Z1Z2, and

X1X2 symmetries. We find symmetry to be preserved in the first two cases,
wherein the corresponding asymmetry measures are found to be equal to
zero. In the case of the X1X2 symmetry test, however, we find that symme-
try is broken. Later in this section, we derive the precise formula according
to which the X1X2 asymmetry measure is found to depend on Γ, t, and J .
Both of the aforementioned examples are discussed in more detail in the
subsequent subsections, along with the obtained simulation results and the
methods whereby the simulations were performed.
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Figure 4: Illustration of the action of the Γ = 1 amplitude damping channel on
the Bloch sphere over time. All states decay exponentially fast to |0⟩.

4.1 Amplitude damping channel

The amplitude damping channel is a quantum channel that models loss of
energy from a system to its environment. This can be used to describe open
quantum systems that interact with their environment via processes such as
spontaneous emission of a single photon from a two-level atomic system.

Continuous-time amplitude damping is generated by a Lindbladian using
the raising operator σ+ := (X + iY )/2 as a jump operator:

L(ρ) = Γ

(
σ+ρσ− − 1

2

{
σ−σ+, ρ

})
, (91)

where Γ ≥ 0 represents the rate of |1⟩ → |0⟩ decay per unit time and σ− :=
(σ+)† = (X − iY )/2. We can obtain the superoperator eLt representing
time evolution under this Lindbladian for a time t by mapping Hilbert space
operators to Liouville–Fock superoperators under the rule

AρB 7→ (B⊺ ⊗A)|ρ⟩⟩, (92)

where A and B are Hilbert space operators, and |ρ⟩⟩ is the “vectorized” ver-
sion of the density operator, formed by stacking the columns of ρ. Applying
this to the Lindbladian yields

L(ρ) = Γ

(
σ+ρσ− − 1

2

{
σ−σ+, ρ

})
(93)

7→ L|ρ⟩⟩ := Γ

(
σ+ ⊗ σ+ − 1

2
I ⊗ (σ−σ+)− 1

2
(σ−σ+)⊗ I

)
|ρ⟩⟩, (94)

1All code used to run simulations, generate plots and perform proof-related calculations
is available at https://github.com/radulaski/SymmetryTestingQuantumAlgorithms.
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so that the time evolution superoperator corresponds to

eLt = exp


0 0 0 Γt

0 −Γt
2 0 0

0 0 −Γt
2 0

0 0 0 −Γt

 =


1 0 0 1− e−Γt

0 e−Γt/2 0 0

0 0 e−Γt/2 0
0 0 0 e−Γt

 .

(95)

The action of this matrix on a vectorized density matrix is

eLt|ρ⟩⟩ = eLt


ρ00
ρ10
ρ01
ρ11

 =


ρ00 + (1− e−Γt)ρ11

e−Γt/2ρ10
e−Γt/2ρ01
e−Γtρ11

 . (96)

De-vectorizing the above, we find that

eLt(ρ) =

(
ρ00 + (1− e−Γt)ρ11 e−Γt/2ρ01

e−Γt/2ρ10 e−Γtρ11

)
. (97)

It is well known that the time-independent amplitude damping channel Dγ

for a probability of decay γ can be represented by Kraus operators as

K0 :=

(
1 0
0

√
1− γ

)
, K1 :=

(
0

√
γ

0 0

)
, (98)

so that

Dγ(ρ) = K0ρK
†
0 +K1ρK

†
1 =

(
ρ00 + γρ11

√
1− γρ01√

1− γρ10 (1− γ)ρ11

)
. (99)

The equivalence of the two representations of the amplitude damping chan-
nel in (97) and (99) shows that γ = 1− e−Γt.

4.1.1 Dependence of X asymmetry measure on Γt

Proposition 2 For the amplitude damping channel in (97), the X asym-
metry measure defined from (81) is given by

a(L, t, {I,X}) = 1

2
(1− e−Γt)2, (100)

where X is the σX Pauli matrix.
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Proof. Let us consider two channels, denoted by Dγ and X . Dγ is the
amplitude damping channel, where γ denotes the probability of decay. Its
action on a density matrix ρ is defined as in (99). The action of X is defined
as X (ρ) = XρX†. Using these definitions, we calculate the actions of these
channels on the elementary matrices {|i⟩⟨j|}i,j∈{0,1} as follows:

Dγ(|0⟩⟨0|) = |0⟩⟨0| X (|0⟩⟨0|) = |1⟩⟨1|

Dγ(|0⟩⟨1|) =
√
1− γ|0⟩⟨1| X (|0⟩⟨1|) = |1⟩⟨0|

Dγ(|1⟩⟨0|) =
√
1− γ|1⟩⟨0| X (|1⟩⟨0|) = |0⟩⟨1|

Dγ(|1⟩⟨1|) = γ|0⟩⟨0|+ (1− γ)|1⟩⟨1| X (|1⟩⟨1|) = |0⟩⟨0|

Next, we define two channels {N ,M}, as follows:

N := X ◦ Dγ , M := Dγ ◦ X . (101)

The actions of the above defined channels with respect to a density matrix
ρ are given by N (ρ) = X (Dγ(ρ)) and M(ρ) = Dγ(X (ρ)). Again, we may
use the above definitions to calculate the following actions:

N (|0⟩⟨0|) = |1⟩⟨1| M(|0⟩⟨0|) = γ|0⟩⟨0|+ (1− γ)|1⟩⟨1|

N (|0⟩⟨1|) =
√
1− γ|1⟩⟨0| M(|0⟩⟨1|) =

√
1− γ|1⟩⟨0|

N (|1⟩⟨0|) =
√
1− γ|0⟩⟨1| M(|1⟩⟨0|) =

√
1− γ|0⟩⟨1|

N (|1⟩⟨1|) = (1− γ)|0⟩⟨0|+ γ|1⟩⟨1| M(|1⟩⟨1|) = |0⟩⟨0|

Let us consider a general unitary representation of the finite discrete
group Z2, given by {U(g)}g∈Z2 = {I,W}, where I is the two-qubit identity
operator, and W is some two-qubit unitary operator satisfying W 2 = I.
Furthermore, let the unitary channels constituting {U(g)}g∈Z2 and corre-
sponding to I and W be denoted by I and W respectively. We may then
define the asymmetry measure given in (81), with respect to some Lindbla-
dian channel eLt and the aforementioned unitary representation {I,W}, as
follows:

a(L, t, {I,W})

=
1

2

∑
g∈Z2

∥∥(id⊗ [U(g), eLt]) (Φ2
)∥∥2

2
(102)
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=
1

2

(∥∥(id⊗ [I, eLt]) (Φ2
)∥∥2

2
+
∥∥(id⊗ [W, eLt

]) (
Φ2
)∥∥2

2

)
(103)

=
1

2

(∥∥(id⊗ [W, eLt
]) (

Φ2
)∥∥2

2

)
(104)

=
1

2

(∥∥∥ΦW◦eLt − ΦeLt◦W
∥∥∥2
2

)
(105)

Now, in order to compute our desired asymmetry measure, we simply
substitute the Lindbladian channel eLt by Dγ , and the unitary channel W
by X . We then have

a(Dγ , t, {I,X})

=
1

2

(∥∥ΦX◦Dγ − ΦDγ◦X
∥∥2
2

)
(106)

=
1

2

(∥∥ΦN − ΦM∥∥2
2

)
(107)

=
1

2

(
Tr
[(
ΦN )2]+Tr

[(
ΦM)2]− 2Tr

[
ΦNΦM]) (108)

= Tr
[(
ΦDγ

)2]− Tr
[
ΦNΦM] , (109)

where the last line follows because Tr
[(
ΦDγ

)2]
= Tr

[(
ΦN )2] = Tr

[(
ΦM)2],

which in turn follows from (67). Additionally, from (48), we know that for
any two quantum channels N and M, the overlap term Tr

[
ΦNΦM] may be

expressed as

Tr
[
ΦNΦM] = 1

d2

∑
i,j

Tr [N (|i⟩⟨j|)M(|j⟩⟨i|)] . (110)

Using the above formula, we find that

|i⟩⟨j| Tr [Dγ(|i⟩⟨j|)Dγ(|j⟩⟨i|)] Tr [N (|i⟩⟨j|)M(|j⟩⟨i|)]

|0⟩⟨0| 1 1− γ

|0⟩⟨1| 1− γ 1− γ

|1⟩⟨0| 1− γ 1− γ

|1⟩⟨1| γ2 + (1− γ)2 1− γ

We can now calculate each of the two terms in (109). For Tr
[(
ΦDγ

)2]
, we
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have:

Tr
[(
ΦDγ

)2]
=

1

d2

∑
i,j

Tr [Dγ(|i⟩⟨j|)Dγ(|j⟩⟨i|)] (111)

=
1

4

[
1 + 1− γ + 1− γ + γ2 + (1− γ)2

]
(112)

=
1

2

[
γ2 − 2γ + 2

]
. (113)

For Tr
[
ΦNΦM], we have

Tr
[
ΦNΦM] = 1

d2

∑
i,j

Tr[N (|i⟩⟨j|)M(|j⟩⟨i|)] (114)

=
1

4
[1− γ + 1− γ + 1− γ + 1− γ] (115)

= 1− γ. (116)

Plugging the above obtained results into (109), and recalling the identifica-
tion γ = 1− e−Γt made in the previous subsection, we conclude that

a(Dγ , t, {I,X}) = γ2

2
=

(1− e−Γt)2

2
. (117)

We have thus computed X asymmetry measure both as a function of the
overall probability of decay γ, as well as the probability of decay per unit
time, Γ, and time t.

We note here that it is interesting to compare the value in Proposition 2
with Proposition IV.2 of [44]. The latter proposition evaluated an asymme-
try measure of the amplitude damping channel in terms of the normalized
diamond distance, which is another method for measuring the distance be-
tween two quantum channels. Therein, a value of 1

2

(
1− e−Γt

)
was reported.

Thus, both measures increase with increasing Γt, as would be expected for
any X-asymmetry measure for the amplitude damping channel; however,
they increase differently, due to the differing choices of measures.

4.1.2 Amplitude damping channel simulation results

We used Qiskit’s QasmSimulator to simulate the execution of Algorithm 3
on an idealized quantum processor in order to calculate the X and Z sym-
metries of the amplitude damping channel. We implement the (non-unitary)
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Figure 5: Simulated results of applying Algorithm 3 to measure X and Z asym-
metries of the single-qubit amplitude damping channel, using Qiskit’s noiseless
QasmSimulator. The simulation shows that the system maintains Z symmetry for
any value of amplitude dissipation Γt, while X symmetry is lost for Γt > 0. The

measure of X asymmetry closely matches the analytical expression 1
2

(
1− e−Γt

)2
in the absence of noise. All simulations were run with a total number of shots
determined by the Hoeffding inequality (Theorem 1) with ϵ, δ = 0.01.

amplitude damping channel Dγ by means of a unitary extension Dγ , which
requires an additional “environment” qubit:

Dγ =


0

√
γ −

√
1− γ 0

0 0 0 1
1 0 0 0
0

√
1− γ

√
γ 0

 , (118)

so that
Dγ(ρ) = Tr1

[
Dγ (|0⟩⟨0| ⊗ ρ)D†

γ

]
. (119)

Using (118) to implement the amplitude damping channel, we constructed
Algorithm 3 in Qiskit and used it to measure the X and Z asymmetries of
the channel. We executed the algorithm on Qiskit’s QasmSimulator, which
emulates an idealized quantum processor with no decoherence. The results,
plotted in Figure 5, show the expected Z symmetry and X asymmetry, in
agreement with the analytical expression.

We also executed the same symmetry tests using Qiskit’s FakeLima back-
end, which provides a depolarizing noise model with parameters estimated
from a real quantum processor. These results are plotted in Figure 6. The
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Figure 6: Simulated results of applying Algorithm 3 to measure X and Z symme-
tries of the single-qubit amplitude damping channel, using Qiskit’s FakeLima back-
end. The simulation shows that the system maintains Z symmetry for any value
of amplitude dissipation Γt, while X symmetry is lost for Γt > 0. The measure of

X asymmetry deviates slightly from the analytical relationship 1
2

(
1− e−Γt

)2
due

to the simulated depolarizing noise. All simulations were run with a total number
of shots determined by the Hoeffding inequality (Theorem 1) with ϵ, δ = 0.01.

Z asymmetry remains zero, while the X asymmetry shows a slight reduc-
tion relative to the analytical expression, which accords with the presence
of depolarizing noise.

4.2 XX Spin chain

Systems of spin-1/2 particles with nearest-neighbor exchange interactions
have been studied for nearly a century and are foundational models in the
exploration of magnetism in condensed matter physics [45]. In the context
of quantum information, spin chains have been studied for potential appli-
cations to quantum state transfer. We consider an open XX Heisenberg
spin chain consisting of two particles, each of which is subject to ampli-
tude damping dissipation. This system is governed by the Lindblad master
equation

L(ρ) = −i[H, ρ] +

2∑
i=1

Li(ρ), (120)

where the Hamiltonian H is given by

H = J(X1X2 + Y1Y2), (121)
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Figure 7: Visualization of a spin chain. Each particle’s spin couples to that of
its neighbors at a rate J . We use Algorithm 3 to examine various symmetries of a
two-particle spin chain.

and each Li term acts on qubit i and is an amplitude dissipation Lindbla-
dian, as defined in (91). In the above, J ≥ 0 represents the rate at which
excitations hop from one site in the chain to the other.

4.2.1 Spin-chain asymmetries as a function of Γt

Since amplitude damping dissipation is a longitudinal interaction, this sys-
tem is manifestly Z1Z2-symmetric for any amount of damping Γt. Con-
versely, the X1X2 symmetry of the Hamiltonian is broken by nonzero energy
dissipation. Finally, the interactions between the two halves of the system
are symmetrical, and so the system is manifestly symmetric under a SWAP
of the two particles. Here we use direct calculation of (81) to show the Z1Z2

and SWAP symmetries, and calculate the measure of X1X2 asymmetry as
a function of Γt.

Proposition 3 For the open two-qubit XX spin chain defined in (120), the
Z1Z2, SWAP, and X1X2 asymmetry measures defined from (81) are given
by

a(L, t, {I, Z1Z2}) = 0, a(L, t, {I, SWAP}) = 0, (122)

and

a(L, t, {I,X1X2}) =
e−2tΓ

(
−t2Γ2 cos(4J)− 16J2 cosh(tΓ) + (16J2 + t2Γ2) cosh(2tΓ)

)
32J2 + 2t2Γ2

.
(123)

Proof. We calculate the Choi states in (105) in terms of the superoperator
representations of the channels W and eLt. Applying the prescription (92)
to the terms of the Lindbladian (120) and operator W , we obtain

W 7→ W ⊺ ⊗W, (124)
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and

L 7→ −i((I ⊗H)− (H⊺ ⊗ I))

+
∑
i

Γ

(
σ+
i ⊗ σ+

i − 1

2
I ⊗ (σ−

i σ
+
i )−

1

2
(σ−

i σ
+
i )⊗ I

)
. (125)

The latter is straightforwardly exponentiated to obtain a superoperator ma-
trix form of eLt.

Applying these representations to (13), inserting these Choi states into
(105) and simplifying with the aid of the computer algebra system Mathe-
matica (code available with our arXiv post), for the three cases of interest
W ∈ {Z1Z2, SWAP, X1X2} we obtain the expressions given in the proposi-
tion.

4.2.2 Spin-chain simulation results

To emulate the dynamics described by (120) on a quantum processor as part
of the algorithm discussed around (81), we must address two issues. First,
the dissipative terms in L must be replaced by unitary extensions acting on
additional “environment” qubits, in order to make them implementable by
unitary gates. Second, noncommuting terms in L make it necessary to use
Trotterization to implement eLt.

We Trotterize the Lindbladian following the prescription in [10, Propo-
sition 2]:

eLt = exp

(
t

m∑
i=1

Li

)
≈

 m∏
i=1

eLit/2N
1∏

j=m

eLit/2N

N

, (126)

The specific ordering of terms in this product (forwards and then backwards)
results in the first and second orders of the Taylor expansions of the left and
right sides of (126) to agree exactly.

We note that the terms −i[Hj , (·)] arising from the Hamiltonian induce
unitary evolution, and so can be implemented simply as e−iHjt. The two
dissipative Lindblad terms can be implemented using Dγ , the unitary exten-
sion of the amplitude damping channel (118), provided that the environment
qubit is reset to zero before each application of Dγ . Therefore, each Trotter
step of the spin chain Lindbladian can be implemented using

m∏
i=1

eLit/2N 7→ e−iX1X2t/2Ne−iY1Y2t/2ND1
1−e−Γt/2ND

2
1−e−Γt/2N , (127)
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Figure 8: Simulation results for applying Algorithm 3 to the two-qubit spin chain
using Qiskit’s noiseless QasmSimulator. We test the system for X1X2, Z1Z2, and
SWAP symmetries. In the latter two cases, the system exhibits symmetry; the
asymmetry measure deviates from zero only due to sampling error. In contrast,
the system’s lack of X1X2 symmetry is evident for nonzero values of Γt, and the
value of the asymmetry measure in this case agrees closely with the analytical result
from (123).

1∏
i=m

eLit/2N 7→ D2
1−e−Γt/2ND

1
1−e−Γt/2N e

−iY1Y2t/2Ne−iX1X2t/2N . (128)

This implementation is essentially the same as that presented in Figure 1
of [13], up to a Trotterization of the unitary dynamics, and reordering of the
Trotter terms.

We used this formulation to implement Algorithm 3 in Qiskit. We then
executed it on Qiskit’s QasmSimulator to test the 2-particle spin chain sys-
tem for X1X1, Z1Z2, and SWAP symmetries, using a number of shots deter-
mined by Hoeffding inequality (Theorem 1) with ϵ, δ = 0.01. The resulting
estimates of the asymmetry measure are plotted in Figure 8, where we can
see that Z1Z2 and SWAP symmetries are maintained in the presence of am-
plitude damping, while X1X2 symmetry is broken to the degree specified
in (123).

As in the case of our previous simulations of the amplitude damping
channel, we also test our spin-chain system for symmetry in the presence of
a depolarizing noise model. We do this, as before, by running our code using
Qiskit’s FakeLima backend. Consistent with the nature of the noise model
imported, we find in Figure 9 that the obtained plot of the X1X2 asymmetry
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Figure 9: Simulation results for applying Algorithm 3 to the two-qubit spin chain
using Qiskit’s FakeLima backend, which includes realistic depolarizing noise. We
test the system for X1X2, Z1Z2, and SWAP symmetries. As in the noiseless sim-
ulation (Figure 8), we verify Z1Z2 and SWAP symmetries, and X1X2 asymmetry,
although the latter deviates from its analytical expression slightly due to the depo-
larizing noise.

measure is slightly reduced with respect to the analytical expression as given
in (123), while both Z1Z2 and SWAP symmetries appear to be preserved.

5 Measurements: Estimating Hilbert–Schmidt dis-
tance and testing symmetries

In this section, we consider a special case of the developments in Sections 3.2
and 3.3, when the channels of interest are measurement channels, meaning
that they can be written in the following form:

N (ω) =
∑
x

Tr[Nxω]|x⟩⟨x|, (129)

where ω is an input state being measured, {Nx}x is a positive operator-
valued measure (POVM) (satisfying Nx ≥ 0 for all x and

∑
xNx = I), and

{|x⟩}x is an orthonormal basis, such that the classical state |x⟩⟨x| encodes
the measurement outcome.

We begin by providing an algorithm for estimating the Hilbert–Schmidt
distance of the Choi states of two measurement channels (Section 5.1). In
principle, since measurement channels are a particular kind of channel, one
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could simply apply Algorithm 3 for this task. However, our developments
below demonstrate that this algorithm can be significantly simplified in this
case, as a consequence of the channel outputs being classical.

After that, we then recall the definition of covariance symmetry of mea-
surement channels and devise an algorithm for testing this symmetry (Sec-
tion 5.2). We note that this kind of symmetry is a special case of the channel
symmetry mentioned in Remark 1.

5.1 Estimating the Hilbert–Schmidt distance of the Choi
states of measurement channels

We are interested in estimating the Hilbert–Schmidt distance between the
Choi states of two measurement channels, defined as in (130) below. Since
measurement channels are indeed channels, the expression for the Hilbert–
Schmidt distance is precisely the same as that given in (43).

We begin our development with the following lemma, which shows how
the various terms in (43) simplify whenN andM are measurement channels.

Lemma 4 Let N and M be measurement channels with d-dimensional in-
puts, so that

N (ω) =
∑
x

Tr[Nxω]|x⟩⟨x|, M(ω) =
∑
x

Tr[Mxω]|x⟩⟨x|, (130)

where {Nx}x and {Mx}x are POVMs. Then

Tr[ΦNΦM] =
1

d2

∑
x,y

δx,y Tr[(Nx ⊗My) (SWAP)]. (131)

Proof. Recalling (45)–(48), we find that

Tr[ΦNΦM]

=
1

d2

∑
i,j

Tr[N (|i⟩⟨j|)M(|j⟩⟨i|)] (132)

=
1

d2

∑
i,j

Tr

[(∑
x

Tr[Nx|i⟩⟨j|]|x⟩⟨x|

)(∑
y

Tr[My|j⟩⟨i|]|y⟩⟨y|

)]
(133)

=
1

d2

∑
i,j,x,y

Tr[Nx|i⟩⟨j|] Tr[My|j⟩⟨i|] Tr[|x⟩⟨x|y⟩⟨y|] (134)

=
1

d2

∑
i,j,x,y

δx,y Tr[Nx|i⟩⟨j|] Tr[My|j⟩⟨i|] (135)
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=
1

d2

∑
x,y

δx,y Tr[(Nx ⊗My) (SWAP)], (136)

concluding the proof.

If the inputs to the channels are n-qubit states and the outputs are m-bit
strings x⃗ and y⃗, then following the development and notation from (51)–(56),
we can write

Tr[ΦNΦM] =
1

22n

∑
x⃗,y⃗

δx⃗,y⃗ Tr[
(
Nx⃗ ⊗My⃗

)
(SWAP(n))] (137)

=
1

22n

∑
x⃗,y⃗∈{0,1}m

∑
k⃗,ℓ⃗∈{0,1}n

δx⃗,y⃗ (−1)k⃗·ℓ⃗Tr[
(
Nx⃗ ⊗My⃗

)
(Φk⃗ℓ⃗)].

(138)

Now, by setting Z ≡ (X⃗, Y⃗ , K⃗, L⃗) to be a multi-indexed random variable

taking the value δx⃗,y⃗ (−1)k⃗·ℓ⃗ with probability

p(x⃗, y⃗, k⃗, ℓ⃗) = p(x⃗, y⃗|⃗k, ℓ⃗) p(k⃗, ℓ⃗), (139)

where

p(k⃗, ℓ⃗) =
1

22n
, (140)

p(x⃗, y⃗|⃗k, ℓ⃗) = Tr[
(
Nx⃗ ⊗My⃗

)
(Φk⃗ℓ⃗)], (141)

we find from the above that its expectation is given by

E[Z] = Tr[ΦNΦM]. (142)

This leads to the following quantum algorithm for estimating Tr[ΦNΦM],
within additive error ε and with success probability not smaller than 1− δ,
where ε > 0 and δ ∈ (0, 1).

Algorithm 4 Given are quantum circuits to implement the measurement
channels N and M.

1. Fix ε > 0 and δ ∈ (0, 1). Set T ≥ 2
ε2

ln
(
2
δ

)
and set t = 1.

2. Generate the bit vectors k⃗ and ℓ⃗ uniformly at random.

3. Prepare the Bell state Φk⃗ℓ⃗ on 2n qubits (using the ordering specified
in (56)).
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|k1⟩ H •

N

x1

|k2⟩ H • x2

|k3⟩ H • x3

|ℓ1⟩

M

y1

|ℓ2⟩ y2

|ℓ3⟩ y3

Figure 10: Depiction of the core quantum subroutine given in Steps 2.-4. of Al-
gorithm 4, such that the measurement channels N and M have three-qubit inputs
and three-bit outputs. This algorithm estimates the overlap Tr[ΦNΦM] of the
Choi states of the measurement channels. In this example, the algorithm begins by
preparing the classical state |k1, k2, k3, ℓ1, ℓ2, ℓ3⟩, where the values k1, k2, k3, ℓ1, ℓ2, ℓ3
are chosen uniformly at random, followed by a sequence of controlled NOTs and

Hadamards. Before the measurement channels are applied, the state is thus |Φk⃗ℓ⃗⟩,
as described in Algorithm 4. The measurement channels are then applied, leading
to the classical bit string x1x2x3y1y2y3. In the diagram, we depict the realization
of the measurement channels N and M as black boxes, but in a simulation of them,
one might make use of additional environment qubits that are prepared and then
discarded.

4. Apply the tensor-product measurement channel N ⊗M (using the or-
dering specified after (56)), which leads to the measurement outcomes
x⃗ and y⃗.

5. Set Yt = δx⃗,y⃗ (−1)k⃗·ℓ⃗.

6. Increment t.

7. Repeat Steps 2.-6. until t > T and then output Y := 1
T

∑T
t=1 Yt as an

estimate of Tr[ΦNΦM].

Figure 10 depicts the core quantum subroutine of Algorithm 4. By the
Hoeffding inequality (recalled as Theorem 1), we are guaranteed that the
output of Algorithm 4 satisfies

Pr
[∣∣Y − Tr[ΦNΦM]

∣∣ ≤ ε
]
≥ 1− δ, (143)

due to the choice T ≥ 2
ε2

ln
(
2
δ

)
.
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By employing Algorithm 4 three times, we can thus estimate (43) for two
measurement channels N and M within additive error ε and with success
probability not smaller than 1 − δ, by using O

(
1
ε2

ln
(
1
δ

))
samples of the

measurement channels N and M.

5.2 Testing symmetries of measurement channels

A POVM {Nx}x is covariant if there exists a unitary representation {U(g)}g∈G
of a group G such that

U(g)†NxU(g) ∈ {Nx}x ∀g ∈ G, x. (144)

Covariants POVMs have been studied previously [14, 34, 7, 15], and they
appear in several applications, including state discrimination [38] and esti-
mation [11]. Connecting to our previous notion of channel symmetry from
Remark 1, a measurement channel N is covariant if there exist unitary
channel representations {U(g)}g∈G and {W(g)}g∈G such that

N ◦ U(g) = W(g) ◦ N ∀g ∈ G. (145)

Plugging into (129), the condition in (145) becomes∑
x

Tr[U(g)†NxU(g)ρ]|x⟩⟨x| =
∑
x

Tr[Nxρ]W (g)|x⟩⟨x|W (g)† ∀g ∈ G.

(146)
Given that the output system is classical, we can restrict the unitary W (g)
to be a shift operator that realizes a permutation πg of the classical letter x,
so that

W (g)|x⟩ = |πg(x)⟩, (147)

and thus (146) becomes∑
x

Tr[U(g)†NxU(g)ρ]|x⟩⟨x|X =
∑
x

Tr[Nxρ]|πg(x)⟩⟨πg(x)|X (148)

=
∑
x

Tr[Nπ−1
g (x)ρ]|x⟩⟨x|X . (149)

Since this equation holds for every input state ρ, we conclude that the fol-
lowing condition holds for a covariant measurement channel:

U(g)†NxU(g) = Nπ−1
g (x) ∀g ∈ G, x, (150)

coinciding with the definition given in (144).
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We are interested in testing the covariance symmetry of the measurement
channel N , and we can do so by testing the following asymmetry measure:

1

|G|
∑
g∈G

∥∥∥ΦN◦U(g) − ΦW(g)◦N
∥∥∥2
2
, (151)

related to the asymmetry measure from (62). By invoking Lemma 3, we
find that

1

|G|
∑
g∈G

∥∥∥ΦN◦U(g) − ΦW(g)◦N
∥∥∥2
2
=

2

d2
Tr[SWAP (N ⊗N ) (SWAP)]

− 2

d2
Tr

SWAP

 1

|G|
∑
g∈G

(W(g) ◦ N )⊗ (N ◦ U(g))

 (SWAP)

 . (152)

Now invoking Lemma 4, we conclude that

Tr[SWAP (N ⊗N ) (SWAP)] =
∑
x,y

δx,y Tr[(Nx ⊗Ny) (SWAP)], (153)

and

Tr

SWAP

 1

|G|
∑
g∈G

(W(g) ◦ N )⊗ (N ◦ U(g))

 (SWAP)


=

1

|G|
∑
g∈G

∑
x,y

δπg(x),y Tr
[(

Nx ⊗ U †(g)NyU(g)
)
(SWAP)

]
. (154)

The latter equality follows because N ◦ U(g) is a measurement channel
with measurement operators

{
U †(g)NxU(g)

}
x
while W(g) ◦ N is a mea-

surement channel with measurement operators {Nπ−1
g (x)}x. As such, we can

employ Algorithm 4 to estimate both terms in (153) and (154), and thus
estimate (151) by subtracting them and multiplying the result by 2

d2
. For

estimating the latter term, in each step of the algorithm, we pick g ∈ G
uniformly at random, as before.

6 Conclusion and discussion

In this work, we proposed asymmetry measures for quantum states, chan-
nels, and measurements, as well as efficient quantum algorithms for estimat-
ing these measures. A key component of the algorithms for channels and
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measurements are methods for efficiently estimating the overlap of their
Choi states. We demonstrated the channel symmetry testing algorithm in
two cases: the single-qubit amplitude damping channel and an open XX
spin chain subject to amplitude dissipation. In both cases, we simulated
our algorithm using Qiskit’s simulator and found excellent agreement with
the analytical expression of the asymmetry measure. Finally, we discussed
which near-term QPU architectures maximize the system size to be tested
using the developed algorithms.

Prospects for implementing on near-term quantum hardware—
The developed quantum algorithms for symmetry testing can be readily
implemented on near-term quantum hardware, as well as potentially guide
the development of architectures for upcoming quantum testbeds. We have
implemented the Lindbladian symmetry testing algorithm in such a way that
the number of physical qubits in hardware is at least four times the number
of qubits in the model. The depth of the circuit depends on the selection
of Trotterization parameters, and for a specific quantum processing unit
(QPU), these parameters should be selected within the hardware coherence
limits.

Furthermore, the qubit connectivity has an important practical role in
enabling implementation of the developed algorithms. Each of the algo-
rithms requires the model to be mapped twice to physical qubits in what we
will call subcircuits A and B (Figure 11). Entangling gates are applied to
pairs of qubits in subcircuits A and B close to the beginning and/or the end
of the algorithm, while the rest of the algorithm requires only local gates
inside the subcircuits. This algorithmic split into two computing layers that
are cross-connected only once or twice during the implementation of the
symmetry testing algorithms lends itself well to upcoming QPU architec-
tures on the IBM Quantum roadmap [23], Crossbill and Flamingo, for the
purposes of maximizing the computable model size. These multi-chip proces-
sors are connected either with a smaller number of higher fidelity quantum
gates implemented via short chip-to-chip connectors (Crossbill), or a larger
number of slower and lower-fidelity quantum gates implemented via long-
range couplers (Flamingo). In terms of symmetry testing algorithms where
subcircuits A and B would be implemented on different chips, the Crossbill
architecture would be suitable for models with a smaller number of qubits
and deeper quantum algorithms, while the Flamingo architecture would be
more suitable for larger systems that are either implemented via shallower
circuits or are executed for algorithms that require only one time-step entan-
glement via the long-range connectors (SWAP test or measurement channel
symmetry test).
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Figure 11: Examples of the compatibility of symmetry testing quantum algo-
rithms with quantum processing units (QPUs) of variable connectivity. a) The
two subcircuit abstraction of the developed algorithms and their implementation
steps. The top chip represents subcircuit A and the bottom the subcircuit B. b) A
two-dimensional array of qubits can explore symmetries in open quantum systems
using a one-dimensional chain of nearest-neighbor interactions. c) Two all-to-all
connected QPUs with pre-entangled system qubits in an event-ready scheme can
explore symmetries of measurements for arbitrary qubit interactions.
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Some of the existing monolithic quantum processors can be used to
efficiently implement symmetry testing of open quantum systems in one-
dimensional chain Hamiltonians, which are zoned into subcircuits A and B,
as shown in Figure 11b. Here, the nearest-neighbor connectivity can be sup-
ported by the Google Sycamore superconducting architecture [2], while the
beyond-the-nearest-neighbor interaction and multi-qubit interactions can be
implemented using QuEra Aquila [76] and recent neutral atom quantum
hardware advances [20], respectively.

For testing models with higher connectivity, all-to-all connected QPUs,
like those offered by IonQ [56] and Quantinuum [63] trapped ion hardware
or by solid state spin-qubit systems [5], can provide more versatility. Since
qubits in these systems can generate spin-photon entanglement, multiple
QPUs can be connected via photon-mediated entanglement distribution and
double the model size in the symmetry testing algorithms (Figure 11c).
Here, the success of the entanglement distribution is statistical and can be
utilized in the event-ready scheme, a frequently employed approach intro-
duced in [77] where photons originating from separate entangling processes
in non-local systems become entangled on a beam-splitter and their quan-
tum state projected in a photon-detection process. Obtaining the desired
quantum state in the measurement usually takes multiple attempts, and fur-
ther processing takes place only upon its confirmation when pairs of qubits
in separate systems are projected onto desired Bell states. This process is
suitable for implementation of the measurement symmetry test (Figure 11a)
which requires entanglement between subcircuits A and B only at the begin-
ning of the algorithm. To be able to expand this two-QPU implementation
from measurement symmetry testing to the state, channel, and Lindbla-
dian symmetry testing, additional work is needed to adapt the protocol to
non-deterministic Bell measurements.
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[64] Yiğit Subaşı, Lukasz Cincio, and Patrick J. Coles. Entanglement spectroscopy
with a depth-two quantum circuit. Journal of Physics A: Mathematical and
Theoretical, 52(4):044001, January 2019. arXiv:1806.08863.

[65] Nishchay Suri, Joseph Barreto, Stuart Hadfield, Nathan Wiebe, Filip Wu-
darski, and Jeffrey Marshall. Two-unitary decomposition algorithm and open
quantum system simulation. Quantum, 7:1002, May 2023.

[66] Matthew Treinish et al. Qiskit: An open-source framework for quantum com-
puting, 2023. https://doi.org/10.5281/zenodo.2573505.
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